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Background

Consider a stochastic system with mutually independent N
elements ( i.e. N bacterium ), X1(t),X2(t), ...,XN(t), where t
denotes the time. Assume that each element Xk(t) (1 ≤ k ≤ N) is
a continuous-time birth-death Markov chain with the same birth
rate b and death rate d . Let SN(t) denote the number of elements
surviving in the system at time t. Then {SN(t), t ≥ 0} is a time
homogeneous Markov chain and its transition rate matrix (or Q
matrix) QN can be written as
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Background

QN =


−bN bN
d −(d+b(N−1)) b(N−1)

. . .
. . .

nd −(nd+b(N−n)) b(N−n)
. . .

. . .
(N−1)d −((N−1)d+b) b

Nd −Nd

 (1)

where 0 ≤ n ≤ N.
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Background

Naturally we may consider a general situation

QN =



−rN(0) bN(0)
dN(1) −rN(1) bN(1)

. . .
. . .

dN(n) −rN(n) bN(n)

. . .
. . .

dN(N−1) −rN(N−1) bN(N−1)
dN(N) −rN(N)

 (2)

where bN(.) ≥ 0, dN(.) ≥ 0, rN(.) ≥ 0, are three nonnegative
functions which depend on N, and rN(n) needs not equal to
bN(n) + dN(n) for 0 ≤ n ≤ N ( Nonconservative !). We may call
the above Q matrix QN a dynamic nonconservative birth-death Q
matrix.
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For example, let

bN(n) = b(N − n)α, dN(n) = (n − N ln
n

N
)α

rN(n) = bN(n) + dN(n)− c(N − n)α,

where b ≥ c and α ≥ 0.
It is clear that we can normalize the above QN matrix by
multiplying 1

Nα , that is,

bN(n)

Nα
= b(1− n

N
)α,

dN(n)

Nα
= (

n

N
− ln

n

N
)α

rN(n)

Nα
=

bN(n) + dN(n)

Nα
− c(1− n

N
)α.

Obviously, when n/N → u (0 < u < 1), we have

bN(n)

Nα
→ b(1− u)α,

dN(n)

Nα
→ d(u − ln u)α

rN(n)

Nα
→ (b − c)(1− u)α + d(u − ln u)α.
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Background

We recalled some known results.

When bN(n) ≡ b > 0, dN(n) ≡ d > 0, rN(n) ≡ r ≥ 0, are
three constants, Piet [ Cambridge Univ. Press, 2011] gave a
closed form of the limiting spectral density of QN .
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When bN(n) = b(n), dN(n) = d(n),
rN(n) = r(n) ≤ b(n) + d(n)), are three positive random
variables for every n ≥ 0 and the sequence
{(b(n), d(n)), n ≥ 0} is i.i.d. or strictly stationary satisfying
E (b(n)/nα)k → µk , E (d(n)/nα)k → νk and
supn≥1 E (rk(n)) <∞ for any k ≥ 1,
Popescu [Probab Theory Related Fields, 2009], Han and
Zhang [Sci. Sin. Math. Chinese Ser., 2015] proved the
existence and uniqueness of the limiting spectral distribution
of the random birth-death Q matrices and gave the expression
of the limiting spectral density function for some special cases
(µk = νk = 1 for all k ≥ 1).
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Two Questions

Under what conditions, there exits a unique limiting spectral
density for the normalized dynamic nonconservative
birth-death matrix Q̄N ?

What is the expression of the limiting spectral density
function?

where Q̄N = −N−αQN is the normalized matrix QN divided by Nα

(α ≥ 0).
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The Main Results

By using the compatibility of the normalized dynamic
nonconservative birth-death matrix Q̄N = −N−αQN (α ≥ 0), we
know that the eigenvalues of Q̄N are all real numbers. Denote
them by λ0(N), λ1(N), . . . , λN(N).

Thus, the empirical spectral distribution FN(x) of the eigenvalues
of Q̄N = −N−αQN (α ≥ 0) can be defined as

FN(x) =
1

N + 1

N∑
k=0

I{λk (N)≤x}

where I (·) is the indicator function and x is any real number.
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The Main Result

Theorem Let b(u) > 0, d(u) > 0, r(u) ≥ 0 be three bounded
continuous functions on (0, 1) such that
bN(n)
Nα = b( n

N ) + o(1), dN(n)
Nα = d( n

N ) + o(1), rN(n)
Nα = r( n

N ) + o(1),
for 1 ≤ n ≤ N − 1, where o(1) denotes the infinitesimal for large
N. Then there exists a unique limiting spectral distribution F (x) of
Q̄N

F (x) = lim
N→∞

FN(x)

and the limiting spectral density function p(x) = F ′(x) has the
following expression

p(x) =
1

π

∫ 1

0

du√
4c(u)− (x − r(u))2

(3)

for x ∈ [α, β] and p(x) = 0 for x /∈ [α, β], where c(u) = b(u)d(u)
α = min0<u<1{r(u)− 2

√
c(u)}, β = max0<u<1{r(u) + 2

√
c(u)}.
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The Main Result

Corollary Let r(u) ≡ 0 and the maximum value of b(u)d(u) is
a2, that is, a2 = max0<u<1 b(u)d(u). Then the limiting spectral
density is an even function on [−2a, 2a].
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Applications of the Theorem

Example 1. Let bN(n) = (N − n)b, dN(n) = nd and
rN(n) = (N − n)b + nd for 0 ≤ n ≤ N. It is clear that the Q
matrix QN is conservative. Take α = 1, the elements of the
normalized Q matrix Q̄N = − 1

NQN can be written as

bN(n)

N
= (1− n

N
)b,

dN(n)

N
= (

n

N
)d ,

rN(n)

N
= (

n

N
)d + (1− n

N
)b,

rN(0) = bN(0) = Nb, rN(N) = dN(N) = Nd ,

for 1 ≤ n ≤ N. This means that b(u) = (1− u)b, d(u) = ud ,
r(u) = ud + (1− u)b for 0 < u < 1, where, b, d > 0.
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Applications of the Theorem

By using the theorem, we know that there exists a unique limiting
spectral density of Q̄N and it can be written as

p(x) =
1

π

∫ 1

0

du√
4u(1− u)bd − (x − (ud + (1− u)b))2

=
1

π

∫ 1

0

du

(b + d)
√

4x(b+d−x)bd
(b+d)4

− [u − b(b+d)+x(d−b)
(b+d)2

]2
,

for x ∈ [0, b + d ]. Here, we can check that α = 0 and β = b + d .
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In order to obtain a closed form of the limiting spectral density
p(x), let

a2 =
4x(b + d − x)bd

(b + d)4
, c =

b(b + d) + x(d − b)

(b + d)2
.

Since (t − c)2 ≤ a2, it follows that c − a ≤ t ≤ a + c and
c − a ≥ 0, a + c ≤ 1.
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Applications of the Theorem

Thus

p(x) =
1

π

∫ 1

0

dt

(b + d)
√
a2 − (t − c)2

=
1

π

∫ c+a

c−a

dt

(b + d)
√

a2 − (t − c)2

=
1

(b + d)

This means that the limiting spectral distribution of Q̄N = − 1
NQN

is uniformly distributed over the interval [0, b + d ].
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Applications of the Theorem

Example 2. Taking rN(n) ≡ 0 (0 ≤ n ≤ N) in Example 1, we
know that Q̄N = − 1

NQN is a dynamic nonconservative birth-death
Q matrix. By using the theorem, its limiting spectral density can
be written as

p(x) =
1

π

∫ 1

0

du√
4bdu(1− u)− x2

=
1

2π
√
bd

∫ 1

0

dt√
1
4 −

x2

4bd − (u − 1
2)2

for x ∈ [−
√
bd ,
√
bd ].
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Applications of the Theorem

In order to obtain a closed form of the limiting spectral density
p(x), let

c2 =
1

4
− (

x

2
√
bd

)2.

Since c2 ≥ (t − 1
2)2, it follows that

0 ≤ 1

2
− c ≤ t ≤ 1

2
+ c ≤ 1

Thus

p(x) =
1

2π
√
bd

∫ 1
2
+c

1
2
−c

du√
c2 − (u − 1

2)2
=

1

2
√
bd

for |x | ≤
√
bd . That is, the limiting spectral distribution of Q̄N is

uniform on the interval [−
√
bd ,
√
bd ].
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Applications of the Theorem

Example 3. Let bN(n) ≡ b > 0, dN(n) ≡ d > 0 and
rN(n) ≡ r ≥ 0 for 0 ≤ n ≤ N. Taking α = 0, the normalized Q
matrix Q̄N = −QN , where

Q̄N =


r −b
−d r −b

. . .
. . .

−d r −b
−d r


Here, r may not be equal to b + d . (may be nonconservative).
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Applications of the Theorem

By the theorem, the limiting spectral density of Q̄N can be written
as

p(x) =
1

π

∫ 1

0

du√
4bd − (x − r)2

=
1

π

1√
4bd − (x − r)2

where r − 2
√
bd ≤ x ≤ r + 2

√
bd . This means that the minimum

eigenvalue and the maximum eigenvalue of Q̄N as N →∞ are
r − 2

√
bd and r + 2

√
bd respectively. This is consistent with Piet’s

result [Cambridge Univ. Press, 2011].
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Applications of the Theorem

Example 4. Taking rN(0) ≡ b, rN(N) ≡ d and rN(n) ≡ b + d for
1 ≤ n < N in Example 3, we know that QN is a conservative Q
matrix. Hence, 0 is an eigenvalue of Q̄N = −QN and all other
eigenvalues are great than or equal to 0. Since

(
√
b −
√
d)2 = r − 2

√
bd ≤ x ≤ r + 2

√
bd = (

√
b +
√
d)2

it follows that when b 6= d , the first nonzero eigenvalue (that is
the second smallest eigenvalue) is (

√
b −
√
d)2 > 0 and the

maximum eigenvalue is (
√
b +
√
d)2.
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x

p(x)

b + d(
√
b −
√
d)2 (

√
b +
√
d)2

1
2π
√
bd
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The Main Steps of Proof

Step 1 Let GN(z) denote the characteristic function of the
empirical spectral distribution FN(x) of the eigenvalues of
Q̄N = −N−αQN (α ≥ 0). Then

GN(z) =

∫
e ixzdFN(x) =

1

N + 1

N∑
j=0

e iλjz

=
1

N + 1

N∑
j=0

∞∑
m=0

imλmj z
m

m!

=
1

N + 1

∞∑
m=0

imTr(Q̄m
N )

zm

m!
(4)
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The Main Steps of Proof

Step 2 Prove that G (z) = limN→∞ GN(z) exits.
Write Q̄N as

Q̄N = QN(b, d) + DN + o(1)

where DN = diag(rN(0), rN( 1
N ), . . . , rN(N−1N ), rN(1)),

Q̄N(b, d) =



0 −b(0)
−d( 1

N ) 0 −b( 1
N )

. . .
. . .

−d( n
N ) 0 −b( n

N )
. . .

. . .

−d(NN ) 0
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The Main Steps of Proof

Hence

Q̄m
N =

m∑
k=0

C k
mQ

k
N(b, d)Dm−k

N (5)

Note that when k is odd number, Tr(Qk
N(b, d)) = 0. Let

C
k
2
k =

{
0, if k is odd number,

C l
2l , if k = 2l is even number.

where C l
2l is the combinatorial number.
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The Main Steps of Proof

Hence

1

N + 1
Tr(Qk

N(b, d)Dm−k
N )

=
1

N + 1

N−1∑
n=1

C
k
2
k b

k
2 (

n

N
)d

k
2 (

n

N
)rm−k(

n

N
) + O(

1

N + 1
) (6)
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The Main Steps of Proof

By (4), (5), (6), we have

G (z) = lim
N→∞

GN(z) =
∞∑

m=0

im lim
N→∞

1

N + 1
Tr(Q̄m

N )
zm

m

=
∞∑

m=0

im

(
m∑

k=0

C k
m

∫ 1

0
C

k
2
k b

k
2 (u)d

k
2 (u)rm−k(u)du

)
zm

m!

=

∫ 1

0

( ∞∑
l=0

(−1)l

l!l!
(

2
√
b(u)d(u)z

2
)2l

)
e ir(u)zdu

=

∫ 1

0
J0(2

√
b(u)d(u)z)e ir(u)zdt (7)

where J0(·) is the first class of the modified Bessel function.
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The Main Steps of Proof

Step 3 We prove that

µ(m) = lim
N→∞

µN(m) = lim
N→∞

∫
xmdFN(x)

=
m∑

k=0

C k
mC

k
2
k

∫ 1

0
b

k
2 (u)d

k
2 (u)rm−k(u)du

and

∞∑
m=0

µ(2m)−
1
2m = +∞

By using Carleman’s theorem, we know that the sequence of
moments {µ(m);m ≥ 0} can uniquely determine the limiting
spectral distribution function F (x) = limN→∞ FN(x).
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The Main Steps of Proof

Step 4 We verify that the limiting spectral density function
p(x) = F ′(x) exists and it can be written as

p(x) =
1

2π

∫ +∞

−∞
e−izxG (z)dz

=
1

2π

∫ 1

0
dt

[∫ +∞

−∞
e−izxJ0(2

√
b(u)d(u)z)e ir(u)zdz

]
=

1

π

∫ 1

0

du√
4b(u)d(u)− (x − r(u))2
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Prove the existence and uniqueness of the limiting spectral
distribution of one kind of normalized dynamic
nonconservative birth-death matrix Q̄N .

Give an integral expression of the limiting spectral density
function. We can get the closed form of the density function
for some special cases.
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( Thank you ! )
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